2 resultados para ward design

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper details the implementation and operational performance of a minimum-power 2.45-GHz pulse receiver and a companion on-off keyed transmitter for use in a semi-active duplex RF biomedical transponder. A 50-Ohm microstrip stub-matched zero-bias diode detector forms the heart of a body-worn receiver that has a CMOS baseband amplifier consuming 20 microamps from +3 V and achieves a tangential sensitivity of -53 dBm. The base transmitter generates 0.5 W of peak RF output power into 50 Ohms. Both linear and right-hand circularly polarized Tx-Rx antenna sets were employed in system reliability trials carried out in a hospital Coronary Care Unit, For transmitting antenna heights between 0.3 and 2.2 m above floor level, transponder interrogations were 95% reliable within the 67-m-sq area of the ward, falling to an average of 46 % in the surrounding rooms and corridors. Overall, the circular antenna set gave the higher reliability and lower propagation power decay index.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim The aim of the study is to evaluate factors that enable or constrain the implementation and service delivery of early warnings systems or acute care training in practice. Background To date there is limited evidence to support the effectiveness of acute care initiatives (early warning systems, acute care training, outreach) in reducing the number of adverse events (cardiac arrest, death, unanticipated Intensive Care admission) through increased recognition and management of deteriorating ward based patients in hospital [1-3]. The reasons posited are that previous research primarily focused on measuring patient outcomes following the implementation of an intervention or programme without considering the social factors (the organisation, the people, external influences) which may have affected the process of implementation and hence measured end-points. Further research which considers the social processes is required in order to understand why a programme works, or does not work, in particular circumstances [4]. Method The design is a multiple case study approach of four general wards in two acute hospitals where Early Warning Systems (EWS) and Acute Life-threatening Events Recognition and Treatment (ALERT) course have been implemented. Various methods are being used to collect data about individual capacities, interpersonal relationships and institutional balance and infrastructures in order to understand the intended and unintended process outcomes of implementing EWS and ALERT in practice. This information will be gathered from individual and focus group interviews with key participants (ALERT facilitators, nursing and medical ALERT instructors, ward managers, doctors, ward nurses and health care assistants from each hospital); non-participant observation of ward organisation and structure; audit of patients' EWS charts and audit of the medical notes of patients who deteriorated during the study period to ascertain whether ALERT principles were followed. Discussion & progress to date This study commenced in January 2007. Ethical approval has been granted and data collection is ongoing with interviews being conducted with key stakeholders. The findings from this study will provide evidence for policy-makers to make informed decisions regarding the direction for strategic and service planning of acute care services to improve the level of care provided to acutely ill patients in hospital. References 1. Esmonde L, McDonnell A, Ball C, Waskett C, Morgan R, Rashidain A et al. Investigating the effectiveness of Critical Care Outreach Services: A systematic review. Intensive Care Medicine 2006; 32: 1713-1721 2. McGaughey J, Alderdice F, Fowler R, Kapila A, Mayhew A, Moutray M. Outreach and Early Warning Systems for the prevention of Intensive Care admission and death of critically ill patients on general hospital wards. Cochrane Database of Systematic Reviews 2007, Issue 3. www.thecochranelibrary.com 3. Winters BD, Pham JC, Hunt EA, Guallar E, Berenholtz S, Pronovost PJ (2007) Rapid Response Systems: A systematic review. Critical Care Medicine 2007; 35 (5): 1238-43 4. Pawson R and Tilley N. Realistic Evaluation. London; Sage: 1997